REPORT OF AFB/SIN² θ_{W} /ANGULAR WORKING GROUP

JIYEON HAN (UNIV. OF ROCHESTER)

SMP-V MEETING / APR. 19TH, 2012

GROUP ORGANIZATION

- This group is organized for
 - **2012** data analysis / publication of Afb, $\sin^2\theta_W$, angular coefficients
- The group consists of
 - Joint Inst. for Nuclear Research (Dubna) : Sergei Shmatov, Alexander Lanyov, Ilya Gorbunov
 - Texas Tech University (TTU)
 : Nural Akchurin, Sung-Won Lee, Cosmin Dragoin, Keng Kovitanggoon, John Sandy
 - University of Rochester
 - : Arie Bodek, Jiyeon Han
 - Purdue University
 - : Matthew Jones, David Silvers
 - Johns Hopkins University /FNAL
 - : Andrei Gritsan, Nhan V Tran
- The meeting will be bi-weekly (2nd and 4th week) at 4:00 PM (CERN)
- The kick-off meeting was held last Wed (Apr. 11th)
 - Discussion of group's participation/status/plan
 - More details are at https://indico.cern.ch/conferenceDisplay.py?confId=185905

PARTICIPANTS' INTEREST

Group's interest on each topic (Man-power)

```
Afb:

muon channel ⇒

TTU (2S, 1P, 1UG)

Dubna (1S, 1P, 1G)

electron channel ⇒

TTU
```

```
sin²θw:

muon channel ⇒

Dubna

Johns Hopkins (1.5)

FNAL (1P)

electron channel ⇒

Possible contribution by

Dubna
```

```
Angular coefficients:

muon channel ⇒

Rochester (1S, 1P)

Purdue (1S, 1G)

electron channel ⇒

Possible contribution by

Rochester

Purdue
```

S: scientist/professor

G: PhD student

P:postdoc

ug: undergraduate

- Muon channel is more prior than the electron channel
- The analysis can be extended for the electron channel

OVERALL ANALYSIS PLAN

- The analysis will be performed using 2012 data
 - Some of methods are already used for 2011 data publication
 - New approaches are developing using 2011 data
 - Time scale of the analysis :
 - Get approval targeting winter conference (Moriond 2013)
 - Pursue the publication after the approval
 - Not determined how many publication will go (1, 2, or 3??)
 - Prefer to separate the angular measurement from $Afb/\sin^2\theta_W$
 - Afb/ $\sin^2\theta_W$: EW vs. angular coefficients: QCD physics
 - Share the common effort to speed up the analysis
 - Data skimming, efficiencies, background estimation... so on
 - More detailed discussion will be continued in the group

AFB/SIN20W MEASUREMENT AT 2011

- Afb measurement
 - Full 2011 data is used (4.7 fb⁻¹)
 - Afb is measured as a function of mass and rapidity (4 y bins)
 - Event counting method is used
 - μ and e channel is combined for the final result
 - Approved on Feb. 03, 2012
 - On the way of publication (Ready for CWR)
- sin²θw measurement
 - 1.1 fb-1 data is used to extract $sin^2θ_W$: only μ channel considered
 - The multivariate likelihood function is used to extract maximal info.
 - \blacksquare Kinematic distributions (M, $\cos\theta$, y) are used
 - The measurement was published last year: PRD 84 (2011) 112002

AFB/SIN20W MEASUREMENT AT 2012

- TTU will continue Afb for both μ and e channel using 2011 method
 - The forward electron (HF) will be included to cover higher rapidity
 - New postdoc, Cosmin Dragoiu, will inherit (Efe and Youn)'s tool
- Dubna will measure sin²θw using 2011 method and develop Afb method
 - Ilya presented the status of Afb/sin²θw work at last SMP-V meeting
 - Right now, only muon channel is used for the analysis
 - Afb measurement :
 - **Develop** the $\cos\theta$ fitting method
 - The counting method (2011 method) is also used for cross-check
 - $= \sin^2 \theta_W$ measurement :
 - **2011** method is used to extract $\sin^2\theta_W$
 - Andrei/Nhan will contribute on systematic study
 - PDFs, FSR, LO model, alignment are leading systematics

AFB PROSPECT BASED ON 2011 DATA

From Nural's slide at the kick-off meeting

High mass region will be more interesting at 2012!!

ANGULAR COEFFICIENTS

- Angular measurement has not been presented at physics group yet
- Rochester and Purdue group will preform the measurement
- μ channel is more priority and then e channel will be considered

$$\begin{array}{c|c} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{P_{T}^{2}}\mathrm{dyd}\cos\theta\mathrm{d}\phi} & \propto & (1+\cos^{2}\theta) & \longrightarrow & LO \ term \\ \\ + & \frac{1}{2}A_{0}(1-3\cos^{2}\theta) & \longrightarrow & \cos^{2}\theta : \\ & + & A_{1}\sin2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi & \longrightarrow & (\theta,\phi)\ terms \\ \\ + & A_{4}\cos\theta & \longrightarrow & LO \ term : \ determine\ A_{fb} \\ \\ + & A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi & \longrightarrow & very\ small\ terms \\ \end{array}$$

- pQCD makes definite predictions for angular coefficients, A_{0,2,3,4}
 - \blacksquare A_{0,2} are the same for γ^*/Z exchange
 - \blacksquare A_{3,4} originate from γ^*/Z interference
 - A_4 has a direct relation with A_{fb} which is sensitive to $\sin^2\theta_W$, (g_{V} , g_{A} coupling)

ANGULAR COEFFICIENTS IN NLO

Drell-Yan process in NLO: Process has a finite boson P_T

- The angular distribution (A₀,A₂ in P_T) is different for two processes
- The angular coefficients measurement in P_T provide a detailed test of the production mechanism of gauge boson
- Standard model QCD in all order predicts A₀=A₂: Lam-Tung relation
 - Lam-Tung relation is only valid for vector gluons (spin 1)
- The contribution of Compton process is expected to be larger at LHC
 - Comparison b/w LHC vs. Tevatron will be interesting

ANALYSIS APPROACH: ROCHESTER

Angular coefficients in P_T was published at CDF: PRL 106, 241801 (2011)

- Coefficients are measured in Z mass region
- Data prefers higher order prediction

$$A_0 = A_2 = \frac{K \times P_T^2}{M_{\ell\ell}^2 + K \times P_T^2} \implies K = 1.65$$

- K=1 for qqbar vs. K=5 for qg
- Confirmed Lam-Tung relation
- Maximum log-likelihood fitting method is used
 - \blacksquare $A_{0,4}$ are extracted by fitting $\cos\theta_{CS}$, and $A_{2,3}$ by fitting ϕ_{CS}
- Same technique is applied to CMS
 - Analysis tool is ready and applied to 2010/2011 data
 - - Developing muon momentum correction: AN/2012/062

$$A_4 = \frac{8}{3} A_{fb}(M_{\ell\ell}, P_T, y)$$

- $\blacksquare \sin^2 \theta_W \text{ vs. } A_4 \text{ averaging over Z mass}$
- $sin^2\theta_W$ is extracted using various generator programs
- The fixed $\sin^2\theta_W$ at Z pole is used for all Q^2 in generator
- Systematics from QED is not included
- A4 measurement averaging Z mass region can confirm Afb result
 - $= \sin^2\theta_W$ extracted from A₄ provides a cross-check of $\sin^2\theta_W$ measured by A_{fb} or log-likelihood fitting method (Nhan's method)

ANALYSIS APPROACH: PURDUE

- Publishing CDF Y(nS) $\rightarrow \mu + \mu$ polarization analysis at CDF : arXiv:1112.1591
 - Slightly different approach from Rochester's method
 - Factorize A, ε, underlying angular distribution for signal + background

$$\frac{dN_p}{d\Omega_{ij}} \sim N_{\Upsilon} f_p \mathcal{A}_{\Upsilon}(\cos \theta_i, \varphi_j) \cdot (w_{\Upsilon}(\cos \theta_i, \varphi_j; \vec{\lambda}_{\Upsilon}) + N_d s_p \mathcal{A}_b(\cos \theta_i, \varphi_j) \cdot w_b(\cos \theta_i, \varphi_j; \vec{\lambda}_b),$$

$$\frac{dN}{d\Omega} \sim 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\varphi} \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi,$$

- Parameter correlation is incorporated
- Acceptance depends on P_T and $M(\mu\mu)$

- CDF result with 6.7 fb⁻¹
- Fitting returns the parameters

 for both signal and background

- Application to CMS $Z \rightarrow \mu^+\mu^-$ data using 2011 Drell-Yan selection
 - Acceptance calculation using MC with trigger efficiency
 - Calculated separately in each Z P_T range analyzed
 - Efficiency is estimated and compared with the result of Drell-Yan group
 - Fit angular coefficients using S+B model
- Parameterizing angular coefficients in M($\mu\mu$) accounts for FSR, γ^*/Z interference

SUMMARY

- The working group started working to pursue 2012 data analysis
 - Many of analysis already improved the analysis technique and tools
 - The analysis tools are applied to 2011 data
 - Validating and cross check the tools
 - More discussion will be continued in the meeting for
 - how to manage the common efforts
 - develop the analysis approach for the publication
 - analysis details ...
 - The regular meeting will be at Monday, 4:00 PM (CERN) (2nd, 4th week)